Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Ajith Kumar, S.P.a | Banyal, Siddhantb | Bhardwaj, Kartik Krishnab | Thakur, Hardeo Kumara | Sharma, Deepak Kumarc; *
Affiliations: [a] Department of CST, Manav Rachna University, Faridabad | [b] Department of Instrumentation and Control, Netaji Subhas University of Technology, (Formerly known as Netaji Subhas Institute of Technology) New Delhi, India | [c] Department of Information Technology, Netaji Subhas University of Technology, (Formerly known as Netaji Subhas Institute of Technology) New Delhi, India
Correspondence: [*] Corresponding author. Deepak Kumar Sharma, Department of Information Technology, Netaji Subhas University of Technology, (Formerly known as Netaji Subhas Institute of Technology) New Delhi, India. E-mail: dk.sharma1982@yahoo.com.
Abstract: Opportunistic IoT networks operate in an intermittent, mobile communication topology, employing peer-to-peer transmission hops on a store-carry-forward basis. Such a network suffers from intermittent connectivity, lack of end-to-end route definition, resource constraints and uncertainties arising from a dynamic topology, given the mobility of participating nodes. Machine learning is an instrumental tool for learning and many histories-based machine learning paradigms like MLPROPH, KNNR and GMMR have been proposed for digital transformations in the field with varying degrees of success. This paper explores the dynamic topology with a plethora of characteristics guiding the node interactions, and consequently, the routing decisions. Further, the study ascertains the need for better representation of the versatility of node characteristics that guide their behavior. The proposed scheme Opportunistic Fuzzy Clustering Routing (OFCR) protocol employs a three-tiered intelligent fuzzy clustering-based paradigm that allows representation of multiple properties of a single entity and the degree of association of the entity with each property group that it is represented by. Such quantification of the extent of association allows OFCR a proper representation of multiple node characteristics, allowing a better judgement for message routing decisions based on these characteristics. OFCR performed 33.77%, 6.07%, 3.69%, 6.88% and 78.14% better than KNNR, GMMR, CAML, MLPRoPH and HBPR respectively across Message Delivery probability. OFCR, not only shows improved performance from the compared protocols but also shows relatively more consistency across the change in simulation time, message TTL and message generation interval across performance metrics.
Keywords: Analytical models, clustering, fuzzy logic, Internet of Things, opportunistic networks, routing protocols, machine learning, ONE simulator
DOI: 10.3233/JIFS-189782
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1199-1211, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl