Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Srikanth, Pullabhatlaa; * | Koley, Chiranjibb
Affiliations: [a] EED, NIT Durgapur, West Bengal, & CCE (R&D) South, DRDO Secunderabad, India | [b] National Institute of Technology, Durgapur, West Bengal, India
Correspondence: [*] Corresponding author. Pullabhatla Srikanth, EED, NIT Durgapur, West Bengal, & CCE (R&D) South, DRDO Secunderabad, India. E-mail: srikanth.srikki@gmail.com.
Abstract: In this work, different types of power system faults at various distances have been identified using a novel approach based on Discrete S-Transform clubbed with a Fuzzy decision box. The area under the maximum values of the dilated Gaussian windows in the time-frequency domain has been used as the critical input values to the fuzzy machine. In this work, IEEE-9 and IEEE-14 bus systems have been considered as the test systems for validating the proposed methodology for identification and localization of Power System Faults. The proposed algorithm can identify different power system faults like Asymmetrical Phase Faults, Asymmetrical Ground Faults, and Symmetrical Phase faults, occurring at 20% to 80% of the transmission line. The study reveals that the variation in distance and type of fault creates a change in time-frequency magnitude in a unique pattern. The method can identify and locate the faulted bus with high accuracy in comparison to SVM.
Keywords: Power system faults, localization, identification, fuzzy logic, signal processing
DOI: 10.3233/JIFS-189769
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1027-1039, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl