Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Sarin, Sumit; * | Mittal, Antriksh | Chugh, Anirudh | Srivastava, Smriti
Affiliations: Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi, India
Correspondence: [*] Corresponding author. Sumit Sarin, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi, India. E-mail: sumitsarinofficial@gmail.com.
Abstract: Person identification using biometric features is an effective method for recognizing and authenticating the identity of a person. Multimodal biometric systems combine different biometric modalities in order to make better predictions as well as for achieving increased robustness. This paper proposes a touchless multimodal person identification model using deep learning techniques by combining the gait and speech modalities. Separate pipelines for both the modalities were developed using Convolutional Neural Networks. The paper also explores various fusion strategies for combining the two pipelines and shows how various metrics get affected with different fusion strategies. Results show that weighted average and product fusion rules work best for the data used in the experiments.
Keywords: Multimodal, touchless, biometric system, gait recognition, speech recognition
DOI: 10.3233/JIFS-189765
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 981-990, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl