Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Malik, Shailya; b; * | Bansal, Poonamb
Affiliations: [a] Research Scholar University School of Information, Communication and Technology, GGSIPU, New Delhi, India | [b] Department of Computer Science and Engineering, Maharaja Surajmal Institute of Technology, GGSIPU, New Delhi, India
Correspondence: [*] Corresponding author. Shaily Malik, Research Scholar University School of Information, Communication and Technology, GGSIPU, New Delhi, India. E-mail: shaily.singh99@gmail.com.
Abstract: The real-world data is multimodal and to classify them by machine learning algorithms, features of both modalities must be transformed into common latent space. The high dimensional common space transformation of features lose their locality information and susceptible to noise. This research article has dealt with this issue of a semantic autoencoder and presents a novel algorithm with distinct mapped features with locality preservation into a commonly hidden space. We call it discriminative regularized semantic autoencoder (DRSAE). It maintains the low dimensional features in the manifold to manage the inter and intra-modality of the data. The data has multi labels, and these are transformed into an aware feature space. Conditional Principal label space transformation (CPLST) is used for it. With the two-fold proposed algorithm, we achieve a significant improvement in text retrieval form image query and image retrieval from the text query.
Keywords: Semantic autoencoder, hypergraph, twofold validation, cross model retrieval
DOI: 10.3233/JIFS-189759
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 909-917, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl