Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Sarita, Kumaria | Devarapalli, Ramesha; b; * | Kumar, Sanjeevc | Malik, H.d | García Márquez, Fausto Pedroe | Rai, Pankaja
Affiliations: [a] Electrical Engineering Department, BIT Sindri, Dhanbad, Jharkhand, India | [b] Electrical Engineering Department, IIT (ISM), Dhanbad, Jharkhand, India | [c] Tata Steel, Jamshedpur, Jharkhand, India | [d] EE Department, IIT Delhi, India | [e] Ingenium Research Group, University of Castilla-La Mancha, Spain
Correspondence: [*] Corresponding author. Ramesh Devarapalli, E-mail: ramesh.ee@bitsindri.ac.in.
Abstract: Online condition monitoring and predictive maintenance are crucial for the safe operation of equipments. This paper highlights an unsupervised statistical algorithm based on principal component analysis (PCA) for the predictive maintenance of industrial induced draft (ID) fan. The high vibration issues in ID fans cause the failure of the impellers and, sometimes, the complete breakdown of the fan-motor system. The condition monitoring system of the equipment should be reliable and avoid such a sudden breakdown or faults in the equipment. The proposed technique predicts the fault of the ID fan-motor system, being applicable for other rotating industrial equipment, and also for which the failure data, or historical data, is not available. The major problem in the industry is the monitoring of each and every machinery individually. To avoid this problem, three identical ID fans are monitored together using the proposed technique. This helps in the prediction of the faulty part and also the time left for the complete breakdown of the fan-motor system. This helps in forecasting the maintenance schedule for the equipment before breakdown. From the results, it is observed that the PCA-based technique is a good fit for early fault detection and getting alarmed under fault condition as compared with the conventional methods, including signal trend and fast Fourier transform (FFT) analysis.
Keywords: Machine learning, industry 4.0, PCA, condition monitoring, predictive maintenance, preprocessing
DOI: 10.3233/JIFS-189755
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 861-872, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl