Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: kaur, Surindera; b | Chaudhary, Gopalb; * | Dinesh kumar, Javalkara
Affiliations: [a] Lingaya’s Vidyapeeth, Haryana, India | [b] Bharati Vidyapeeth’s College of Engineering, New Delhi, India
Correspondence: [*] Corresponding author. Gopal Chaudhary, Bharati Vidyapeeth’s College of Engineering, New Delhi, India. E-mail: gopal.chaudhary88@gmail.com.
Abstract: Nowadays, Biometric systems are prevalent for personal recognition. But due to pandemic COVID 19, it is difficult to pursue a touch-based biometric system. To encourage a touchless biometric system, a less constrained multimodal personal identification system using palmprint and dorsal hand vein is presented. Hand based Touchless recognition system gives a higher user-friendly system and avoids the spread of coronavirus. A method using Convolution Neural Networks(CNN) to extract discriminative features from the data samples is proposed. A pre-trained function PCANeT is used in the experiments to show the performance of the system in fusion scheme. This method doesn’t require keeping the palm in a specific position or at a certain distance like most other papers. Different patches of ROI are used at two different layers of CNN. Fusion of palmprint and dorsal hand vein is done for final result matching. Both Feature level and score level fusion methods are compared. Results shows the accuracy of upto 98.55% and 98.86% and Equal error rate (EER) of upto 1.22% and 0.93% for score level fusion and feature level fusion, respectively. Our method gives higher accurate results in a less constrained environment.
Keywords: Biometrics, deep learning, feature level fusion, fusion, score level fusion
DOI: 10.3233/JIFS-189753
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 841-849, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl