Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence and Advanced Manufacturing (AIAM 2020)
Guest editors: Shengzong Zhou
Article type: Research Article
Authors: Xia, Yingchuna | Xie, Zhiqianga; * | Xin, Yub | Zhang, Xiaoweia
Affiliations: [a] School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China | [b] Faculty of Electrical Engineering and Computer, Ningbo University, Ningbo, China
Correspondence: [*] Corresponding author. Zhiqiang Xie, School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China. E-mail: hrbust@hotmail.com.
Abstract: The customized products such as electromechanical prototype products are a type of product with research and trial manufacturing characteristics. The BOM structures and processing parameters of the products vary greatly, making it difficult for a single shop to meet such a wide range of processing parameters. For the dynamic and fuzzy manufacturing characteristics of the products, not only the coordinated transport time of multiple shops but also the fact that the product has a designated output shop should be considered. In order to solve such Multi-shop Integrated Scheduling Problem with Fixed Output Constraint (MISP-FOC), a constraint programming model is developed to minimize the total tardiness, and then a Multi-shop Integrated Scheduling Algorithm (MISA) based on EGA (Enhanced Genetic Algorithm) and B&B (Branch and Bound) is proposed. MISA is a hybrid optimization method and consists of four parts. Firstly, to deal with the dynamic and fuzzy manufacturing characteristics, the dynamic production process is transformed into a series of time-continuous static scheduling problem according to the proposed dynamic rescheduling mechanism. Secondly, the pre-scheduling scheme is generated by the EGA at each event moment. Thirdly, the jobs in the pre-scheduling scheme are divided into three parts, namely, dispatched jobs, jobs to be dispatched, and jobs available for rescheduling, and at last, the B&B method is used to optimize the jobs available for rescheduling by utilizing the period when the dispatched jobs are in execution. Google OR-Tools is used to verify the proposed constraint programming model, and the experiment results show that the proposed algorithm is effective and feasible.
Keywords: Customized products, integrated scheduling, multiple workshop, fixed output, branch and bound
DOI: 10.3233/JIFS-189721
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 3, pp. 4609-4617, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl