Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence and Advanced Manufacturing (AIAM 2020)
Guest editors: Shengzong Zhou
Article type: Research Article
Authors: Sun, Tieboa; b | Liu, Jinhaoa; * | Kan, Jiangminga | Sui, Tingtinga
Affiliations: [a] School of Technology, Beijing Forestry University, Beijing, China | [b] Department of Mechanical and Electrical Engineering, Jiangsu Food & Pharmaceutical Science College, Huai’an, China
Correspondence: [*] Corresponding author. Jinhao Liu, School of Technology, Beijing Forestry University, Beijing 100083, China. E-mail: liujinhao@vip.163.com.
Abstract: Aiming at the problem of automatic classification of point cloud in the investigation of vegetation resources in the straw checkerboard barriers region, an improved random forest point cloud classification algorithm was proposed. According to the problems of decision tree redundancy and absolute majority voting in the existing random forest algorithm, first the similarity of the decision tree was calculated based on the tree edit distance, further clustered reduction based on the maximum and minimum distance algorithm, and then introduced classification accuracy of decision tree to construct weight matrix to implement weighted voting at the voting stage. Before random forest classification, based on the characteristics of point cloud data, a total of 20 point cloud single-point features and multi-point statistical features were selected to participate in point cloud classification, based on the point cloud data spatial distribution characteristics, three different scales for selecting point cloud neighborhoods were set based on the point cloud density, point cloud classification feature sets at different scales were constructed, optimizing important features of point cloud to participate in point cloud classification calculation after variable importance scored. The experimental results showed that the point cloud classification based on the optimized random forest algorithm in this paper achieved a total classification accuracy of 94.15% in dataset 1 acquired by lidar, the overall accuracy of classification on dataset 2 obtained by dense matching reaches 92.03%, both were higher than the unoptimized random forest algorithm and MRF, SVM point cloud classification method, and dimensionality reduction through feature optimization can greatly improve the efficiency of the algorithm.
Keywords: Straw checkerboard barriers, random forest, point cloud characteristics, point cloud classification
DOI: 10.3233/JIFS-189694
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 3, pp. 4337-4349, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl