Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Fuzzy System for Economy Back on Track
Guest editors: Anand Paul, Simon K.S. Cheung, Chiung Ching Ho and Sadia Din
Article type: Research Article
Authors: Lv, Qiangguo ; *
Affiliations: Bohai University, Jinzhou, Liaoning, China
Correspondence: [*] Corresponding author. Qiangguo Lv, Bohai University, China. E-mail: lvqiangguo@126.com.
Abstract: Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increase. Based on BP neural network as the model structure foundation, this research combines PID controller to control the process of model operation. In order to improve the calculation accuracy to improve the control effect, the prediction output is obtained through the prediction model instead of the actual measured value. In addition, with the football robot as the object, this research studies the multi-agent reinforcement learning problem and its application in the football robot. The content includes single-agent reinforcement learning, multi-agent system reinforcement learning, and ball hunting, role assignment, and action selection in football robot decision strategies based on this. The simulation results show that the method proposed in this paper has certain effects.
Keywords: BP neural network, PID controller, football simulation, simulation model
DOI: 10.3233/JIFS-189570
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 7483-7495, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl