Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Fuzzy model for human autonomous computing in extreme surveillance and it’s applications
Guest editors: Varatharajan Ramachandran
Article type: Research Article
Authors: Zhao, Zengminga; * | Chen, Wentingb
Affiliations: [a] Henan Police College, Zhengzhou, Henan, China | [b] Henan Finance University, Zhengzhou, Henan, China
Correspondence: [*] Corresponding author. Zengming Zhao, Henan Police College, Zhengzhou, Henan, China. E-mail: zhaozengming521@163.com.
Abstract: Monetary policy is an important means for a country to regulate macroeconomic operations and achieve established economic goals. Moreover, a reasonable monetary policy improves the efficiency of financial operations on a global scale and effectively resolves the financial crisis. At present, scholars from various countries have begun to pay attention to the issue of differentiated formulation of monetary policy among regions. This paper combines machine learning to construct a monetary policy differentiation effect analysis model based on the GVAR model. Moreover, this paper uses the gray correlation analysis method to obtain the gray correlation matrix between industries, and then introduces the industry’s own characteristics, industry relevance and macroeconomic factors into the macro stress test of credit risk. In addition, this paper constructs a conduction model based on the industry GVAR model, and uses the first-order difference sequence of GDP growth rate, CPI growth rate and M2 growth rate of each economic region to construct a GVAR model to test the impulse response function. The results of the test show that the monetary policy shocks of various economic regions are significantly different. All in all, the research results show that the performance of the model constructed in this paper is good.
Keywords: GVAR, monetary policy, regional effects, machine learning
DOI: 10.3233/JIFS-189494
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 6567-6579, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl