Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Fuzzy model for human autonomous computing in extreme surveillance and it’s applications
Guest editors: Varatharajan Ramachandran
Article type: Research Article
Authors: Lalitha, S.; *
Affiliations: Department of Electronics and Communication Engineering, B.M.S. College of Engineering, Bangalore, India
Correspondence: [*] Corresponding author. S. Lalitha, Assistant Professor, Department of Electronics and Communication Engineering, B.M.S. College of Engineering, Bangalore, India. E-mail: lalithas.bmsce@rediffmail.com.
Abstract: Cancer has been one of the most serious health challenges to the human kind for a long period of time. Lung cancer is the most prevalent type of cancer which shows higher death rates. However, lung cancer mortality rates can be tracked by periodic screening. With the advanced medical science, the society has reaped numerous benefits with respect to screening equipments. Computed Tomography (CT) is one of the popular imaging techniques and this work utilizes the CT images for lung cancer detection. An early detection of lung cancer could prolong the lifetime of the patient and is made effortless by the latest screening technology. Additionally, the accuracy of disease detection can be enhanced with the help of the automated systems, which could support the healthcare experts in effective diagnosis. This article presents an automated lung cancer detection system equipped with machine learning algorithm, which can differentiate between the benign, malignant and normal classes of lung cancer. The accuracy of the proposed lung cancer detection method is around 98.7%, which is superior to the compared approaches.
Keywords: Cancer, Lung cancer detection, CT images, machine learning
DOI: 10.3233/JIFS-189476
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 6355-6364, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl