Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Meta-Heuristic Techniques for Solving Computational Engineering Problems: Challenges and New Research Directions
Guest editors: Suresh Chandra Satapathy, Rashmi Agrawal and Vicente García Díaz
Article type: Research Article
Affiliations: Chongqing Industry Polytechnic College, School of Mechanical Engineering and Automation, Yubei District Chongqing, China
Correspondence: [*] Corresponding author. Yi Zheng, Chongqing Industry Polytechnic College, School of Mechanical Engineering and Automation, Yubei District Chongqing, China. E-mail: zhengyi@cqipc.edu.cn.
Abstract: In this paper, an in-depth analysis of automated production line faults based on fuzzy algorithms is carried out and based on an in-depth investigation of the mechanism of equipment faults, research work on equipment state prediction and production line fault diagnosis is carried out, and the corresponding algorithm model workflow is given, which has some practical application value for improving the accuracy of production line fault prediction. The algorithm with data mining association rules is proposed to extract the confidence parameters of the conditional state fuzzy net model, and an inverse conditional state fuzzy net is established based on the conditional state fuzzy net for fault diagnosis and reasoning, and a dynamic confidence level reasoning mechanism is also established for reverse reasoning based on the iterative algorithm of maximum algebra. To monitor the operating status of the production line more intuitively, a production line fault prediction and analysis system is developed based on the platform, which mainly includes a data management module, state monitoring module, state prediction module, fault diagnosis module, and maintenance advice module, which can more easily realize the monitoring of the production line equipment state and fault early warning prompting, making the system more practical value.
Keywords: Fuzzy algorithms, automation, production lines, failure analysis
DOI: 10.3233/JIFS-189453
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 4, pp. 6151-6162, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl