Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence as a maturing and growing technology: An urgent need for intelligent systems
Guest editors: X. Yuan and M. Elhoseny
Article type: Research Article
Authors: Zheng, Xiangyua; b; * | Jia, Ronga; c | Aisikaer, d | Gong, Linlinge | Zhang, Guangrub | Dang, Jiana
Affiliations: [a] School of Electrical Engineering, Xi’an University of Technology, Xi’an, Shaanxi, China | [b] State Grid Gansu Electric Power Research Institution, Lanzhou, Gansu, China | [c] Energy Intelligence Laboratory, Xi’an University of Technology, Xi’an, Shaanxi, China | [d] Xinjiang Goldwind Science & Technology Co., ltd, Urumqi, Xinjiang, China | [e] Lanzhou Petrochemical College of Vocational Technology, Lanzhou, Gansu, China
Correspondence: [*] Corresponding author. Xiangyu Zheng, E-mail: 1102zxy@163.com.
Abstract: Ensuring the stable and safe operation of the power system is an important work of the national power grid companies. The power grid company has established a special power inspection department to troubleshoot transmission line components and replace faulty components in a timely manner. At present, assisted manual inspection by drone inspection has become a trend of power line inspection. Automatically identifying component failures from images of UAV aerial transmission lines is a cutting-edge cross-cutting issue. Based on the above problems, the purpose of this article is to study the component identification and defect detection of transmission lines based on deep learning. This paper expands the dataset by adjusting the size of the convolution kernel of the CNN model and the rotation transformation of the image. The experimental results show that both methods can effectively improve the effectiveness and reliability of component identification and defect detection in transmission line inspection. The recognition and classification experiments were performed using the images collected by the drone. The experimental results show that the effectiveness and reliability of the deep learning method in the identification and defect detection of high-voltage transmission line components are very high. Faster R-CNN performs component identification and defect detection. The detection can reach a recognition speed of nearly 0.17 s per sheet, the recognition rate of the pressure-equalizing ring can reach 96.8%, and the mAP can reach 93.72%.
Keywords: Power line detection, deep learning, component recognition, faster R-CNN, network model
DOI: 10.3233/JIFS-189353
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 3147-3158, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl