Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence as a maturing and growing technology: An urgent need for intelligent systems
Guest editors: X. Yuan and M. Elhoseny
Article type: Research Article
Authors: Zhu, Wenqiang; *
Affiliations: School of Software and Internet of Things Engineering, Jiangxi University of Finance and Economics, Nanchang, China
Correspondence: [*] Corresponding author. Wenqiang Zhu. E-mail: stbrook@yeah.net.
Abstract: First, the recommendation system and its advantages are introduced in detail, and based on the characteristics of the intelligent topic logical interest set resource and user behavior in the existing intelligent topic logical interest set resource platform, a personalized fuzzy logic model of the intelligent topic logical interest set resource is established and adapted to it. The personalized fuzzy logic user personalized fuzzy logic interest model of personalized fuzzy logic is designed, and the user personalized fuzzy logic interest transfer method is designed to simulate the user learning process. Secondly, on the basis of the established model, according to the idea of collaborative filtering, the personalized fuzzy logic user’s personalized fuzzy logic interest value and the user’s rating of resources are respectively predicted, and the two prediction results are combined to recommend resources to the user. Finally, the ontology is applied to user interest description, and a method based on personalized fuzzy logic user rough interest vector and nearest neighbor concept aggregation is proposed to find fine-grained user interest and recommend interest resources. Experimental tests show that this method can better describe the composition and development of user interests, making the recommendation effect of interest resources for specific users more accurate and reliable. The problem of collaborative recommendation in personalized fuzzy logic systems is further studied, the basic principles and typical technologies of collaborative recommendation are analyzed, and the collaborative recommendation method based on users with similar interests and the collaborative recommendation method based on weighted association rules are proposed.
Keywords: Personalized fuzzy logic, interest model, recommendation of interest resources, collaborative recommendation
DOI: 10.3233/JIFS-189329
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2891-2901, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl