Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence as a maturing and growing technology: An urgent need for intelligent systems
Guest editors: X. Yuan and M. Elhoseny
Article type: Research Article
Authors: Hou, Qiana; * | Li, Cuijuanb | Kang, Minc | Zhao, Xind
Affiliations: [a] School of Foreign Languages, Shaanxi University of Chinese Medicine, Shaanxi, China | [b] Beijing 263 Enterprise Communication Co., Ltd, Beijing, China | [c] School of Foreign Languages, Shaanxi University of Chinese Medicine, Shaanxi, China | [d] Baidu Online Network Technology (Beijing) Co., Ltd., Beijing, China
Correspondence: [*] Corresponding author. Qian Hou, School of Foreign Languages, Shaanxi University of Chinese Medicine, Xixian New District, Shaanxi, China. E-mail: thore0404@163.com.
Abstract: English feature recognition has a certain influence on the development of English intelligent technology. In particular, the speech recognition technology has the problem of accuracy when performing English feature recognition. In order to improve the English feature recognition effect, this study takes the intelligent learning algorithm as the system algorithm and combines support vector machines to construct an English feature recognition system and uses linear classifiers and nonlinear classifiers to complete the relevant work of subjective recognition. Moreover, spectral subtraction is introduced in the front end of feature extraction, and the spectral amplitude of the noise-free signal is subtracted from the spectral amplitude of the noise to obtain the spectral amplitude of the pure signal. By taking advantage of the insensitivity of speech to the phase, the phase angle information before spectral subtraction is directly used to reconstruct the signal after spectral subtraction to obtain the denoised speech. In addition, this study uses a nonlinear power function that simulates the hearing characteristics of the human ear to extract the features of the denoised speech signal and combines the English features to expand the recognition. Finally, this study analyzes the performance of the algorithm proposed in this study through comparative experiments. The research results show that the algorithm in this paper has a certain effect.
Keywords: SVM, Intelligent algorithm, English features, feature recognition
DOI: 10.3233/JIFS-189314
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2721-2731, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl