Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Artificial Intelligence as a maturing and growing technology: An urgent need for intelligent systems
Guest editors: X. Yuan and M. Elhoseny
Article type: Research Article
Authors: Miao, Jianjun; *
Affiliations: School of Humanities and Social Sciences, Beihang University, Beijing, China
Correspondence: [*] Corresponding author. Miao Jianjun, School of Humanities and Social Sciences, Beihang University, Beijing, China. E-mail: mjj_mjh2020@163.com.
Abstract: It is difficult for the intelligent teaching system in colleges to effectively predict student grade, which makes it difficult to formulate follow-up teaching strategies. In order to improve the effect of student grade prediction, this study improves the neural network algorithm, combines support vector machines to build a student grade prediction model, and uses PCA to reduce the dimensionality of the sample data. The specific operation is realized by SPSS software. Moreover, this study removes redundant information inside the input vector and compresses multiple features into a few typical features as much as possible. In addition, the research set a control experiment to analyze the performance of the research model and compare the advantages and disadvantages of the classification prediction effect of traditional machine learning algorithms and neural network algorithms. Through experimental comparison, we can see that the model constructed in this paper has certain advantages in all aspects of parameter performance, and the prediction model proposed in this study has certain effects.
Keywords: Support vector machine, neural network, student grade, prediction model
DOI: 10.3233/JIFS-189310
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2673-2683, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl