Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Qianna, Sun; *
Affiliations: School of Innovation and Entrepreneurship, Huaiyin Institute of Technology, Huaian, Jiangsu, China
Correspondence: [*] Corresponding author. Sun Qianna, School of Innovation and Entrepreneurship, Huaiyin Institute of Technology, Huaian, Jiangsu, China. E-mail: sunqnak@163.com.
Abstract: The intelligent evaluation of classroom teaching quality is one of the development directions of modern education. At present, some teaching quality evaluation models have accuracy problems, and the evaluation process is affected by a variety of interference factors, which leads to inaccurate model results, and it is impossible to find out the specific factors that affect teaching. In order to improve the accuracy of classroom teaching quality evaluation, this study improves RVM based on the method of feature extraction and empirical modal decomposition of ACLLMD method, and establishes classroom theoretical teaching quality evaluation model and experimental teaching quality evaluation model based on RVM algorithm. Moreover, this study uses test data to analyze the accuracy and reliability of the evaluation results to verify the feasibility and reliability of the new method. In addition, this study verifies the reliability of this algorithm by comparing with the manual scoring results. The research results show that RVM can be used to construct classroom theory teaching quality evaluation models and experimental teaching quality evaluation models with high accuracy and good reliability.
Keywords: Improved algorithm, neural network, path sequencing, network teaching, knowledge recommendation
DOI: 10.3233/JIFS-189240
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2457-2467, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl