Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Dongmei, Li; *
Affiliations: Department of Foreign Language, Inner Mongolia University of Technology, Huhhot, China
Correspondence: [*] Corresponding author. Li Dongmei, Department of Foreign Language, Inner Mongolia University of Technology, Huhhot, China. E-mail: mabelldm6688@163.com.
Abstract: English text-to-speech conversion is the key content of modern computer technology research. Its difficulty is that there are large errors in the conversion process of text-to-speech feature recognition, and it is difficult to apply the English text-to-speech conversion algorithm to the system. In order to improve the efficiency of the English text-to-speech conversion, based on the machine learning algorithm, after the original voice waveform is labeled with the pitch, this article modifies the rhythm through PSOLA, and uses the C4.5 algorithm to train a decision tree for judging pronunciation of polyphones. In order to evaluate the performance of pronunciation discrimination method based on part-of-speech rules and HMM-based prosody hierarchy prediction in speech synthesis systems, this study constructed a system model. In addition, the waveform stitching method and PSOLA are used to synthesize the sound. For words whose main stress cannot be discriminated by morphological structure, label learning can be done by machine learning methods. Finally, this study evaluates and analyzes the performance of the algorithm through control experiments. The results show that the algorithm proposed in this paper has good performance and has a certain practical effect.
Keywords: Machine learning, English, text-to-speech conversion, improved algorithm, simulation
DOI: 10.3233/JIFS-189238
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2433-2444, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl