Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Yu, Hailong | Ji, Yannan; * | Li, Qinglin
Affiliations: Chengde Medical College, Chengde, Hebei, China
Correspondence: [*] Corresponding author. Yannan Ji, Chengde Medical College, Chengde, Hebei, China. E-mail: yuhailong198237@126.com.
Abstract: Due to the diversity of text expressions, the text sentiment classification algorithm based on semantic understanding is difficult to establish a perfect sentiment dictionary and sentence matching template, which leads to strong limitations of the algorithm. In particular, it has certain difficulties in the classification of student sentiments. Based on this, this paper analyzes the student sentiment classification model by neural network algorithm and uses the student group as an example to explore the application of neural network model in sentiment classification. Moreover, the regularization method is added to the loss function of LSTM so that the output at any time is related to the output at the previous time. In addition, the sentimental drift distribution of sentimental words on each sentimental label is added to the regularizer, and the sentimental information is merged with the two-way LSTM to allow the model to choose forward or reverse. Finally, in order to verify the research model, the performance of the model proposed in this paper is studied through experimental research. The research shows that the model proposed in this paper has better comprehensive performance than the traditional model and can meet the actual needs of students’ sentiment classification.
Keywords: GRU neural network, improved algorithm, student sentiment, sentiment classification, sentiment recognition
DOI: 10.3233/JIFS-189227
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2301-2311, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl