Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Complex evolutionary artificial intelligence in cognitive digital twinning
Guest editors: Neal Wagner, Sundhararajan, Le Hoang Son and Meng Joo
Article type: Research Article
Authors: Li, Man; * | Bai, Ruifang
Affiliations: School of Humanity and Education, Xi’an Eurasia University, Xi’an, China
Correspondence: [*] Corresponding author. Man Li, School of Humanity and Education, Xi’an Eurasia University, Xi’an, China. E-mail: liman_2020@126.com.
Abstract: With the deepening of people’s research on event anaphora, a large number of methods will be used in the identification and resolution of event anaphora. Although there has been some progress in the resolution of the current event, the difficult problems have not yet been completely resolved. This study analyzes the English information anaphora resolution based on SVM and machine learning algorithms and uses the CNN three-layer network as the basis to model the structure. Moreover, this study improves the semantic features by adding semantic roles and analyzes and compares the performance of the improved semantic features with those before the improvement. In addition, this study combines semantic features to compare and analyze each feature combination and uses a dual candidate model to improve the system. Finally, this study analyzes the experimental results. The results show that the performance of the system using the dual candidate model is better than that of the single candidate model system.
Keywords: SVM, machine learning, English information, anaphora resolution, feature recognition
DOI: 10.3233/JIFS-189219
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 2, pp. 2205-2215, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl