Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Nourbakhsh, Azamossadata | Moin, Mohammad-Shahramb; * | Sharifi, Arasha
Affiliations: [a] Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran | [b] ICT Research Institute (ITRC), Tehran, Iran
Correspondence: [*] Corresponding author. Shahram Moin, ICT Research Institute (ITRC), Tehran, Iran. E-mail: moin@itrc.ac.ir.
Abstract: Face is the most important and most popular biometric used in many identification and verification systems. In these systems, for reducing recognition error rate, the quality of input images need to be as high as possible. Face Image Compliancy verification (FICV) is one of the most essential methods for this purpose. In this research, a brain functionality inspired model is presented for FICV using Haxby model, which is a face visual perception consistent model containing three bilateral areas for three different functionalities. As a result, contribution of this work is presenting a new model, based on human brain functionality, improving the compliancy verification of face images in FICV context. Perceptual understanding of an image is the motivation of most of the quality assessment methods, i.e., the human quality perception is considered as a gold standard and a perfect reference for recognition and quality assessment. The model presented in this work aims to make the operational process of face image quality assessment system closer to the performance of a human expert. Three basic modules have been introduced. Face structural information, for initial information encoding, is simulated by an extended Viola-Jones model. Face image quality assessment is presented by International Civil Aviation Organization (ICAO), in ICAO (ISO / IEC19794 -11) requirements’ compliancy assessment document. Like Haxby model, perception is performed through two distinct functional and neurological pathways, using Hierarchical Maximum pooling (HMAX) and Convolutional Deep Belief Networks (CDBN). Information storing and fetching for training are similar to their corresponding modules in brain. For simulating the brain decision making, the final results of two separate paths are integrated by weighting sum operator. Nine ISO / ICAO requirements were used for testing the model. The simulation results, using AR and PUT databases, shows improvements in six requirements using the proposed method, in comparison with the FICV benchmark.
Keywords: Haxby model, ICAO, facial images quality verification, HMAX model, CDBN
DOI: 10.3233/JIFS-189171
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8543-8555, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl