Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Randhawa, Princya; * | Shanthagiri, Vijayb | Kumar, Ajaya
Affiliations: [a] Department of Mechatronics, Manipal University, Jaipur, Rajasthan, India | [b] Department of Software, Analogica India Pvt. Ltd., Bangalore, India
Correspondence: [*] Corresponding author. Princy Randhawa, Department of Mechatronics, Manipal University, Jaipur, Rajasthan, India. E-mail: princyrandhawa23@gmail.com.
Abstract: In the new era of technology with the development of wearable sensors, it is possible to collect data and analyze the same for recognition of different human activities. Activity recognition is used to monitor humans’ activity in various applications like assistance for an elderly and disabled person, Health care, physical activity monitoring, and also to identify a physical attack on a person etc. This paper presents the techniques of classifying the data from normal activity and violent attack on a victim. To solve this problem, the paper emphasis on classifying different activities using machine learning (supervised) techniques. Various experiments have been conducted using wearable inertial fabric sensors for different activities. These wearable e-textile sensors were woven onto the jacket worn by a healthy subject. The main steps which outline the process of activity recognition: location of sensors, pre-processing of the statistical data and activity. Three supervised algorithmic techniques were used namely Decision tree, k-NN classifier and Support Vector Machine (SVM). Based on the experimental work, the results obtained show that the SVM algorithm offers an overall good performance matched in terms of accuracy i.e. 97.6% and computation time of 0.85 seconds for k-NN and Decision Tree for all activities.
Keywords: Fabric sensors, accelerometer, woman protection, algorithm, machine learning
DOI: 10.3233/JIFS-189133
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8115-8123, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl