Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Recent trends, Challenges and Applications in Cognitive Computing for Intelligent Systems
Guest editors: Vijayakumar Varadarajan, Piet Kommers, Vincenzo Piuri and V. Subramaniyaswamy
Article type: Research Article
Authors: Sirajudeen, Mohamed; * | Anitha, R.
Affiliations: DST-Cloud Research Lab, Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. Mohamed Sirajudeen, DST-Cloud Research Lab, Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Chennai, Tamilnadu, India. E-mail: ducksirajsmilz@gmail.com.
Abstract: Manually verifying the authenticity of the physical documents (personal identity card, certificates, passports, legal documents) increases the administrative overhead and takes a lot of time. Later image processing techniques were used. But most of the image processing based forgery document detection methods are less accurate. To improve the accuracy, this paper proposes an automatic document verification model using Convolutional Neural Networks (CNN). Furthermore, we use Optical Character Recognition (OCR) and Linear Binary Pattern (LBP) to extract the textual information and regional edges from the documents. Later, Oriented fast and Rotated Brief (ORB) is used to extract the images from the scanned documents. To train the CNN, MIDV-500 dataset of 256 Azerbaijani passport images, each with the size of 1040*744 pixels is taken. The proposed CNN model uses sliding window operations layers to evaluate the authenticity. The proposed model analyzes both the textual authenticity and image (seal, stamp and hologram) authenticity of the scanned document. The experimental analysis is carried out on the TensorFlow using python programming language. The results derived from the proposed CNN based forgery detection model is compared with existing models and the results are promising to implement on the real time applications
Keywords: Document verification, convolution neural network, forgery document detection, cognitive document processing
DOI: 10.3233/JIFS-189128
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 6, pp. 8057-8068, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl