Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Decision Making Using Intelligent and Fuzzy Techniques
Guest editors: Cengiz Kahraman
Article type: Research Article
Authors: Caglayan, Nadide; * | Satoglu, Sule Itir | Kapukaya, E. Nisa
Affiliations: Industrial Engineering Department, Istanbul Technical University, Management Faculty, Istanbul, Turkey
Correspondence: [*] Corresponding author. Nadide Caglayan, Istanbul Technical University, Management Faculty, Industrial Engineering Department, 34367, Istanbul, Turkey. E-mail: caglayan16@itu.edu.tr.
Abstract: Sales forecasting with high accuracy is crucial in many industries. Especially, in fast-moving consumer goods, retail and apparel industries, the products are not tailor-made and must be produced and made available in chain stores to the customers, in advance. Therefore, for sales and operations planning, forecast information is required. However, traditionally, time series based forecasting techniques are used that merely consider the seasonality, trend, auto-regressive and cyclic factors. This type of forecasting is not suitable especially in cases where many other factors involved and affect the product sales. In apparel retail industry, special factors such as promotions, special days, weather (temperature), and location of the store may affect the product demands of the chain stores. The unique aspect of this study is that the sales of a product family of the fashion retail chain stores were estimated by means of artificial neural networks, for the first time in the literature. Besides, in this study, new significant factors in forecasting were explored that influence the demand of the chain stores. So, in this study, artificial neural networks are developed and used for sales forecasting of a product family of a real chain store, in Turkey. The stores exist in many cities, and some of the cities have much more stores than the other cities. The city with the highest number of stores was selected and some of the stores in this city chosen among them. The past sales, sales price and promotion data of selected stores are used. In addition, store information, number of customers visiting the store, and weather temperature data are included in the model. Sales are estimated by artificial neural networks. Besides, Regression Analysis was used for forecasting and the results of both techniques were compared. As a result of the study, the most appropriate network structure has been obtained, and a high sales forecasting performance has been reached.
Keywords: Artificial neural networks, data analysis, demand forecasting, retail sectors
DOI: 10.3233/JIFS-189115
Journal: Journal of Intelligent &Fuzzy Systems, vol. 39, no. 5, pp. 6517-6528, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl