Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Computational Human Performance Modelling for Human-in-the-Loop Machine Systems
Guest editors: Hoshang Kolivand, Valentina E. Balas, Anand Paul and Varatharajan Ramachandran
Article type: Research Article
Authors: Zhiming, Caia | Daming, Lia; b; * | Lianbing, Dengc
Affiliations: [a] Institute of Data Science, City University of Macau, China | [b] The Post-Doctoral Research Center of Zhuhai Da Hengqin Science and Technology Development Co., Ltd, China | [c] Zhuhai Da Hengqin Science and Technology Development Co., Ltd, Hengqin New Area, China
Correspondence: [*] Corresponding author. Li Daming, E-mail: dmli@cityu.mo.
Abstract: With the rapid development of urban construction and the further improvement of the degree of urbanization, despite the intensification of the drainage system construction, the problem of urban waterlogging is still showing an increasingly significant trend. In this paper, the authors analyze the risk evaluation of urban rainwater system waterlogging based on neural network and dynamic hydraulic model. This article introduces the concept of risk into the study of urban waterlogging problems, combines advanced computer simulation methods to simulate different conditions of rainwater systems, and conducts urban waterlogging risk assessment. Because the phenomenon of urban waterlogging is vague, it is affected by a variety of factors and requires comprehensive evaluation. Therefore, the fuzzy comprehensive evaluation method is very suitable for solving the risk evaluation problem of urban waterlogging. In order to improve the scientificity of drainage and waterlogging prevention planning, sponge cities should gradually establish rainwater impact assessment and waterlogging risk evaluation systems, comprehensively evaluate the current capacity of urban drainage and waterlogging prevention facilities and waterlogging risks, draw a map of urban rainwater and waterlogging risks, and determine the risk level. At the same time, delineate drainage and waterlogging prevention zones and risk management zones to provide effective technical support for the formulation of drainage and storm waterlogging prevention plans and emergency management.
Keywords: Urban rainwater system, waterlogging; risk assessment; neural network
DOI: 10.3233/JIFS-189045
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5661-5671, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl