Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Computational Human Performance Modelling for Human-in-the-Loop Machine Systems
Guest editors: Hoshang Kolivand, Valentina E. Balas, Anand Paul and Varatharajan Ramachandran
Article type: Research Article
Authors: Alhaidar, Abdul Rahmana | Sikkandar, Mohamed Yacina; * | Alkathiry, Abdulaziz A.b
Affiliations: [a] Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University Al Majmaah, Saudi Arabia | [b] Department of Physical Therapy, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
Correspondence: [*] Corresponding author. Mohamed Yacin Sikkandar, Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University Al Majmaah, Saudi Arabia. E-mail: m.sikkandar@mu.edu.sa.
Abstract: Vertical Ground Reaction Force (VGRF) is a force obtained during gait cycle beneath the feet and is used to screen the severity of Parkinson’s disease (PD) patient’s in clinical environment. This article investigates the VGRF signals (left and right) semblance nature among PD patients and control subjects as a function of time and possibility of reconstructing dual tasking VGRF signal from normal walking VGRF signals using radial basis function (RBF) based artificial intelligence (AI). There are many traditional methods for gait analysis and these methods are purely subjective and none made semblance analysis of same subjects gait pattern in different tasking. In order to overcome the difficulties faced by PD patients, RBF based AI is proposed in this research to reconstruct the dual tasking VGRF signal from normal walking VGRF signal. 93 PD patients with mean age: 66.3 years (63% men), and 73 healthy controls with mean age: 66.3 years (55% men) datasets are used in this work. Proposed RBF network is trained on VGRF signals obtained in normal walking and dual tasking conditions from control. The network was trained with 60% of VGRF data and tested on remaining 40% data. Semblance analysis results are encouraging, and it shows that semblance is high in PD patients than control subjects during dual tasking (P < 0.05). In order to test the findings of semblance analysis, we explicitly reconstruct VGRF signal of clinically significant dual tasking from VGRF signal of normal walking by the proposed RBF method. Findings proved that the proposed RBF network can reconstruct dual tasking VGRF signal of PD patients from their normal walking VGRF signal with high cross correlation (P < 0.0001). These findings pave way for a new adjunct tool to diagnose the gait dynamics of PD patients using the proposed reconstruction method.
Keywords: Vertical ground reaction force, signals, semblance, continuous wavelet transform, k-means clustering
DOI: 10.3233/JIFS-189027
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5437-5448, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl