Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Algorithms for Complex Information Services - Recent Advances and Future Trends
Guest editors: Andino Maseleno, Xiaohui Yuan and Valentina E. Balas
Article type: Research Article
Authors: Liu, Kainana | Zhang, Meiyuna; b; * | Hassan, Mohammed K.c
Affiliations: [a] College of Information and Intelligent Engineering, University of Sanya, China | [b] College of Humanities and Communication, University of Sanya, China | [c] Department of Mechatronics, Faculty of Engineering, Horus university, Egypt
Correspondence: [*] Corresponding author. Meiyun Zhang, E-mail: jwj-jiang@ncist.edu.cn.
Abstract: To monitor the scene anomaly in real-time through video and image and identify the emergencies, try to respond quickly at the beginning of the emergency and reduce the loss. This paper mainly focuses on the realization of the image recognition system for the anomalous characteristics of tourism emergencies. The problem is to study the number of people in the scenic spot based on scenic spot monitoring. The video-based population anomaly monitoring method has improved the AUC index of the W-SFM method by 0.423, and the AUC has increased by 0.0844 compared with the optical flow method; Degree-enhanced algorithm (BCOF), by grasping the micro-blog data related to the scenic spot, comprehensively predicts the overall comfort of the current tourists in the scenic spot, and establishes a tourist state expression model. Compared with the BN algorithm and the NEG algorithm, the BCOF algorithm is the accuracy and the recall rate of tourists in the scenic spots was improved by 14% and 18% respectively. The image recognition system of tourism emergency anomaly was established, and the early warning model of tourism emergency based on group intelligence perception was used to implement early warning on scenic spots. Monitoring, can achieve an overall accuracy of 83.33%, the model has a strong predictive ability, and achieves a scenic spot Real-time monitoring of events.
Keywords: Tourist scenic spot, image recognition, video recognition, emotional comfort, crowd anomaly monitoring, early warning model
DOI: 10.3233/JIFS-189000
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5149-5159, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl