Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Moral-García, Serafín; * | Mantas, Carlos J. | Castellano, Javier G. | Abellán, Joaqu’ın
Affiliations: Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
Correspondence: [*] Corresponding author. Serafín Moral-García, Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain. E-mail: seramoral@decsai.ugr.es.
Abstract: Binary Relevance (BR) is a simple and direct approach to the Multi-Label Classification (MLC). It decomposes the multi-label problem into several binary problems, one per label. It uses an algorithm of traditional supervised classification in order to solve these binary problems. On the other hand, Credal C4.5 (CC4.5) is a modification of the classical C4.5. CC4.5 estimates the probability of the class variable by using imprecise probabilities. In the literature, this new classification algorithm has obtained better results than C4.5 when both have been applied on datasets with class noise. In MLC, since there are not just a class, but multiple labels are disposed, it is more probable that there is intrinsic noise than in traditional classification. From the previous reasons, in this work it is studied the performance of BR using Credal C4.5 as base classifier versus BR with C4.5. It is carried out an experimental study with several muti-label datasets and a considerable number of measures for MLC. This study shows that the performance of BR is improved when it uses CC4.5 as base classifier versus BR with C4.5. In consequence, it is probably suitable to apply imprecise probabilities in Decision Trees within the MLC field too.
Keywords: Multi-label classification, Binary Relevance, Credal C4.5, C4.5, imprecise probabilities
DOI: 10.3233/JIFS-18746
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 6, pp. 6501-6512, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl