Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Algorithms for Complex Information Services - Recent Advances and Future Trends
Guest editors: Andino Maseleno, Xiaohui Yuan and Valentina E. Balas
Article type: Research Article
Authors: Zhang, Yubao*;
Affiliations: School of Information Media, Zhejiang Fashion Institute of Technology, Zhejiang, Ningbo, China
Correspondence: [*] Corresponding author. Yubao Zhang, School of Information Media, Zhejiang Fashion Institute of Technology, Zhejiang 315211, Ningbo, China. E-mail: zbaob@zjff.edu.cn.
Abstract: The purpose of this article is to explore effective image feature extraction algorithms in the context of big data, and to mine their potential information from complex image data. Based on the BRISK and SIFT algorithms, this paper proposes an image feature extraction and matching algorithm based on BRISK corner points. By combining the SIFT scale space and the BRISK algorithm, a new scale space construction method is proposed. The BRISK algorithm extracts the corner invariant features. Then, by using the improved feature matching method and eliminating the mismatching algorithm, the exact matching of the images is realized. A large number of experimental verifications were performed in the standard test Mikolajczyk image database and aerial image database. The experimental results show that the improved algorithm in this paper is an effective image matching algorithm. The highest accuracy of actual aerial image matching can reach 85.19%, and it can realize the actual aerial image matching that BRISK and SIFT algorithms cannot complete. The improved algorithm in this paper has the advantages of higher matching accuracy and strong robustness.
Keywords: Big data, image feature extraction, corner point, brisk algorithm, sift algorithm
DOI: 10.3233/JIFS-179996
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 4, pp. 5109-5118, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl