Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Applied Machine Learning and Management of Volatility, Uncertainty, Complexity & Ambiguity (V.U.C.A)
Guest editors: Srikanta Patnaik
Article type: Research Article
Authors: Wang, Qinge | Chen, Huihua*;
Affiliations: School of Civil Engineering, Central South University, Chang’sha, China
Correspondence: [*] Corresponding author. Huihua Chen, E-mail: leicchen@sina.com.
Abstract: In order to overcome the problems of long execution time and low parallelism of existing parallel random forest algorithms, an optimization method for parallel random forest algorithm based on distance weights is proposed. The concept of distance weights is introduced to optimize the algorithm. Firstly, the training sample data are extracted from the original data set by random selection. Based on the extracted results, a single decision tree is constructed. The single decision tree is grouped together according to different grouping methods to form a random forest. The distance weights of the training sample data set are calculated, and then the weighted optimization of the random forest model is realized. The experimental results show that the execution time of the parallel random forest algorithm after optimization is 110 000 ms less than that before optimization, and the operation efficiency of the algorithm is greatly improved, which effectively solves the problems existing in the traditional random forest algorithm.
Keywords: Distance weights, parallel algorithm, random forest algorithm, algorithm optimization
DOI: 10.3233/JIFS-179965
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 1951-1963, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl