Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Selected papers of LKE 2019
Guest editors: David Pinto, Vivek Singh and Fernando Perez
Article type: Research Article
Authors: Hernández-Illera, Antonioa; * | Martínez-Prieto, Miguel A.a | Fernández, Javier D.b | Fariña, Antonioc
Affiliations: [a] Department of Computer Science, University of Valladolid, Spain | [b] Vienna University of Economics and Business & Complexity Science Hub Vienna, Austria | [c] University of A Coruña, Database Lab, CITIC, Spain
Correspondence: [*] Corresponding author. Antonio Hernández Illera, Department of Computer Science, University of Valladolid. Campus María Zambrano, 40006, Segovia, Spain. E-mail: antonio.hi@gmail.com.
Abstract: RDF self-indexes compress the RDF collection and provide efficient access to the data without a previous decompression (via the so-called SPARQL triple patterns). HDT is one of the reference solutions in this scenario, with several applications to lower the barrier of both publication and consumption of Big Semantic Data. However, the simple design of HDT takes a compromise position between compression effectiveness and retrieval speed. In particular, it supports scan and subject-based queries, but it requires additional indexes to resolve predicate and object-based SPARQL triple patterns. A recent variant, HDT++, improves HDT compression ratios, but it does not retain the original HDT retrieval capabilities. In this article, we extend HDT++ with additional indexes to support full SPARQL triple pattern resolution with a lower memory footprint than the original indexed HDT (called HDT-FoQ). Our evaluation shows that the resultant structure, iHDT++ , requires 70 - 85% of the original HDT-FoQ space (and up to 48 - 72% for an HDT Community variant). In addition, iHDT++ shows significant performance improvements (up to one level of magnitude) for most triple pattern queries, being competitive with state-of-the-art RDF self-indexes.
Keywords: HDT, RDF compression, triple pattern resolution, SPARQL, linked data
DOI: 10.3233/JIFS-179888
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 2, pp. 2249-2261, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl