Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Navdeep, ; * | Singh, Vijander | Rani, Asha | Goyal, Sonal
Affiliations: Department of Instrumentation and Control Engineering, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
Correspondence: [*] Corresponding author. Navdeep, Department of Instrumentation and Control Engineering, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India. E-mail: navdeep.phd.16@nsit.net.in.
Abstract: This paper presents an improved hyper smoothing function based methodology for efficient edge detection. The main aim of this work is to obtain localized edges of noisy and blurred images without duplicate ones and integrating them into meaningful object boundaries. Therefore, logarithmic hyper-smoothing function is introduced in local binary pattern leading to improved hyperfunction based local binary pattern (IHLBP) algorithm. The proposed technique uses an improved counting scheme to correctly evaluate the number of image points having pixel value greater than or equal to the central pixel. The IHLBP algorithm is tested on synthetic images, radiography images, real-life pictures from USC-SIPL and BSDS database. Improved local binary pattern (ILBP), hyper local binary pattern (HLBP), Canny and Sobel methods are also used for comparative analysis. The results reveal that the proposed algorithm performs well on all synthetic and real images in the presence of blur and salt & pepper noise. Thus IHLBP proves to be an effective approach for edge detection in comparison to conventional methods.
Keywords: Edge detection, digital radiography images, real images, noise images
DOI: 10.3233/JIFS-179713
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6325-6335, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl