Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Alpana, ; * | Chand, Satish
Affiliations: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
Correspondence: [*] Corresponding author. Alpana, School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India. E-mail: alpana.srk@gmail.com.
Abstract: Coal is a primary natural resource of fuel that is efficiently used for electricity generation, steel or iron production, and household usage. Characterization is needed for industries to understand the quality of coal before shipping. Currently, industries follow chemical, microscopical, and machine-based analysis as the gold standard for coal characterization. These conventional analyses of coal are an indispensable method over the years and have tested by high skilled petrologists. Though, these types of optical or machine-dependent recognition of coal category samples are quite slow, expensive, and restricted by subjective analyses with less accuracy. The main aim of this research is to propose an accurate, time, and cost-effective machine learning-based automated characterization system by analyzing coal color and textural features. This paper comes up with a quantitative approach toward the characterization of dissimilar types of coal for better utilization in industries. The proposed ensemble learning coal characterization method provides an accuracy of around 97% and takes less computational time than conventional methods. Hence, the proposed automated coal characterization system provides support to industries in the development of computer-aided assessment of coal category samples.
Keywords: Coal, HSV, GLCM, image processing, machine learning
DOI: 10.3233/JIFS-179707
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6257-6267, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl