Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Sanagar, Swati | Gupta, Deepa; *
Affiliations: Department of Computer Science & Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru
Correspondence: [*] Corresponding author. Deepa Gupta, Department of Computer Science & Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru. E-mail: g_deepa@blr.amrita.edu.
Abstract: Sentiment analysis research has evolved over the years to extract relevant information from opinionated raw text. Sentiment lexicon is a compiled list of sentiment words and a core component of sentiment analysis tasks. These words play a key role in domain adaptation. Domain adaptation is challenging due to variation in sentiments across the domains. We propose a solution to this research problem by presenting a genre-level sentiment lexicon adaptation approach. The model uses a language domain sense to represent the genre pertaining to the distinct characteristics of the communicated text. The approach addresses the generalization of knowledge at the genre level by learning the multi-source domain lexicon for the selected source domains. The novelty of our approach lies in the genre level relevancy of the source lexicon to the target domains. The model uses unlabeled training data for the source and target domain sentiment lexicon learning. The lexicon adaptation is demonstrated on a long list of target domains that address the three domain adaptation challenges. Experimental results have proved that the model learns the relevant scores and polarities of sentiment words, in addition, it identifies new domain-based sentiment words. The model is evaluated in comparison with standard baselines.
Keywords: Lexicon adaptation, sentiment lexicon, domain adaptation, multiple source, transfer learning, sentiment analysis
DOI: 10.3233/JIFS-179704
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6223-6234, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl