Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Intelligent data analysis and applications & smart vehicular technology, communications and applications
Guest editors: Valentina Emilia Balas and Lakhmi C. Jain
Article type: Research Article
Authors: Zhang, Fuquana | Wang, Yioub; * | Wu, Chenshengb
Affiliations: [a] Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China | [b] Beijing Institute of Science and Technology Information, Beijing, China
Correspondence: [*] Corresponding author. Yiou Wang, Beijing Institute of Science and Technology Information, Beijing, China. E-mail: wangyiou90@163.com.
Abstract: Digital creativity is creative expression derived from cultural creativity and information technology. In order to overcome the problem in the creative generation in the condition of fuzzy and uncertain ideas, an automatic generation method of cross-modal fuzzy creativity (AGMCFC) is proposed. In this subject, fuzzy creative data sets and learning retrieval network are constructed for the sake of extracting original creative data effectively. And the logical correlations between creative objects are acquired dynamically based on the graph neural network. Creative objects and creative styles are generated by using generative adversarial nets technology and style transfer technology, respectively. Then, the projectiles, boundary markers and location words of the creative scene objects are generated by analyzing related attributes of each entity. After adjusting the layout, creative works are automatically generated. A fuzzy creative generating environment is implemented. Experimental results show that the screened number of AGMCFC method is about twice as much as that of manual method, and the accuracy rate of AGMCFC method is improved compared with the manual method. AGMCFC method performs well at creative generation of fuzzy ideas automatically.
Keywords: Generation of fuzzy creativity, cross-modal, graph neural network, creative works
DOI: 10.3233/JIFS-179657
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 5685-5696, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl