Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Fuzzy Systems for Medical Image Analysis
Guest editors: Weiping Zhang
Article type: Research Article
Authors: Chen, Guobina; 1 | Chen, Zhongshengb; *
Affiliations: [a] Chongqing Key Laboratory of Spatial Data Mining and Big Data Integration for Ecology and Environment, Rongzhi College of Chongqing Technology and Business University, PR China | [b] College of Land and Resources, China West Normal University, Sichuan, China
Correspondence: [*] Corresponding author. Zhongsheng Chen, College of Land and Resources, China West Normal University, Nanchong 637009, Sichuan, China. E-mail: chenzhs@cwnu.edu.cn.
Note: [1] E-mail: chen_gb1982@163.com
Abstract: With the rapid development of the economy, the demand for urban land resources is also growing. How to make more rational use of land resources and make more rational planning of cities become a major problem in current economic development. At present, the use of remote sensing images to classify urban land use areas has become a research hot spot. However, the traditional classification accuracy rate using the maximum likelihood classification method needs to be improved. How to improve the classification accuracy rate of urban land use area of remote sensing image has become the focus and key of the research. Both rough sets and fuzzy sets are mathematical methods for dealing with uncertain problems. The rough fuzzy sets generated by the combination of the two can solve the problem of information loss due to the rough set discretization process. Based on the advantages of fuzzy rough sets, this paper applies fuzzy rough sets to the study of urban land use area classification of remote sensing images, so as to improve the accuracy of urban land use area classification of remote sensing images. Firstly, the spectral features and texture features of the remote sensing image are extracted after preprocessing the remote sensing image. Secondly, using the domain relationship fuzzy rough set reduces the extracted features. Finally, the support vector machine is used to classify the reduced feature set, and the classification of urban land use area is realized. In the simulation experiment, the classification accuracy is evaluated by the overall classification accuracy, Kappa coefficient, and single class classification success index. The evaluation data shows that the fuzzy rough set is applied to the remote sensing image urban land use area classification, which has a good application effect.
Keywords: Urban land use area, remote sensing image, fuzzy rough set, support vector machine
DOI: 10.3233/JIFS-179603
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 3803-3812, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl