Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Fuzzy Logic for Analysis of Clinical Diagnosis and Decision-Making in Health Care
Article type: Research Article
Authors: Hu, Yuna | Zhou, Zuojiana; * | Hu, Kongfaa | Li, Huib
Affiliations: [a] School of Information Technology, Nanjing University of Chinese Medicine, Nanjing, P R China | [b] School of Computer Engineering, Huaihai Institute of Technology, Lianyungang, P R China
Correspondence: [*] Corresponding author. Zuojian Zhou, E-mail: anniyahy@126.com.
Abstract: Detecting community structure is critical in analysing social networks which are flourishing and influencing every aspect of people’s social life. Most social network systems are composed with complicated entity relations such and social interests, user relationships and their interactions. To understand how users interact with each other under the community level, its not enough to consider one kind of these relations while ignore the other. An united network model that can comprehensively integrate these relations is essential for community detection. Focusing on such kind of problem when dealing with social network with multiple relations, this paper proposes a heterogeneous network model which characterizes and constructs user similarity relations by combining both of users’ interests and their interactions attributes. Based on the heterogeneous similarity model, an additive spectral decomposition algorithm is applied to detect overlapped communities from the network. The remarkable effect of our heterogeneous model is the ability to reveal most important attributes of the blog network. And, comparing to crisp clustering method, the additive spectral decomposition algorithm proposed is effective for finding overlapped user groups which is more reasonable among social networks where users tend to join multiple social groups. Results of experimental studies on real-world and synthetic datasets demonstrate the effectiveness of the algorithm with respect to the size, the distributive structure and the high dimensionality of the datasets.
Keywords: Community detection, micro blog network, user interest, user interaction, heterogeneous network model, user similarity modelling
DOI: 10.3233/JIFS-179415
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 1, pp. 409-416, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl