Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Collective intelligence in information systems
Guest editors: Ngoc Thanh Nguyen, Edward Szczerbicki, Bogdan Trawiński and Van Du Nguyen
Article type: Research Article
Authors: Nguyen, Ngoc Thanga | Phan, Van Thanhb; c; * | Malara, Zbigniewd
Affiliations: [a] Faculty of Economics, Tay Nguyen University, Buon Ma Thuot City, DakLak, Vietnam | [b] Institute of Research and Development, Duy Tan University, Da Nang, Vietnam | [c] Quang Binh University, Dong Hoi, Quang Binh, Vietnam | [d] Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Correspondence: [*] Corresponding author. Van Thanh Phan, E-mail: thanhkem2710@gmail.com.
Abstract: In recent decades, the Nonlinear Grey Bernoulli Model “NGBM (1, 1)” has been applied in various fields and achieved positive results. However, its prediction results may be inaccurate in different scenarios. In order to expand the field of application and to improve the predictive quality of the NGBM (1, 1) model, this paper proposes an effective model (named Fourier-NGBM (1, 1)). This model includes two main stages; first, we get the error values based on the actual data and predicted value of NGBM (1, 1). Then, we use a Fourier series to filter out and to select the low-frequency error values. To test the superior ability of the proposed model, two numerical data sets were used. One is the historical data of annual water consumption in Wuhan from 2005 to 2012 in He et al. ’s paper, and the other is example data from Wang et al. ’s paper. The forecasted results prove that the performance of the Fourier-NGBM (1, 1) model is better than three other forecasting models, namely GM (1, 1), NGBM (1, 1) and the improved Grey Regression model. Furthermore, this study also applied the proposed model to forecast the electricity consumption in Vietnam up to the year 2020. The empirical results can offer valuable insights and provide basic information for model building to develop future policies regarding electrical industry management. In subsequent research, more methodologies can be used to reduce the residual error of the NGBM (1, 1) model, such as Markov chain or different kinds of Fourier functions. Additionally, the proposed model can be applied in different industries with fluctuating data and uncertain information.
Keywords: Fourier series, nonlinear grey Bernoulli model, prediction accuracy, residual error, electricity consumption, Vietnam
DOI: 10.3233/JIFS-179368
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 6, pp. 7631-7641, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl