Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent & fuzzy theory in engineering and science
Guest editors: Teresa Guarda, Isabel Lopes and Álvaro Rocha
Article type: Research Article
Authors: Li, Bina; b | Wei, Xingb | Li, Chaob | Ding, Shuaia; *
Affiliations: [a] School of Management, HeFei University of Technology, Hefei, China | [b] Bengbu Medical College, Bengbu, China
Correspondence: [*] Corresponding author. Shuai Ding, School of Management, HeFei University of Technology, Hefei, 230009, China. E-mail: dingshuai@hfut.edu.cn.
Abstract: Due to the lack of uniform standards for pathological cell detection, it is difficult to identify. In order to improve the accuracy of pathological cell identification, this study combines the actual situation of cell detection based on traditional particle algorithm to construct a C-V model based on level set algorithm and curve evolution theory, which realizes the effective separation of different substances inside the cell. At the same time, in order to effectively extract the characteristics of cell images, this paper uses the global research method to extract the features of the research object and adopts the improved gray level co-occurrence matrix to extract the texture features, thus effectively improving the feature extraction quality. In addition, in order to study the accuracy of the algorithm model identification in this study, this paper designs a comparative experiment for performance analysis. The research shows that the proposed algorithm model has good performance, can achieve accurate recognition and feature extraction of pathological cells, has certain practical effects, and can provide theoretical reference for subsequent related research.
Keywords: Particle algorithm, neural network, cell detection, model
DOI: 10.3233/JIFS-179211
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 5, pp. 6301-6313, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl