Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent Data Aggregation Inspired Paradigm and Approaches in IoT Applications
Guest editors: Xiaohui Yuan and Mohamed Elhoseny
Article type: Research Article
Authors: Huang, Hea; b; * | Deng, Haojiangb | Sheng, Yiqiangb | Ye, Xiaozhoub
Affiliations: [a] School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Science | [b] National Network New Media Engineering Research Center, Institute of Acoustics, University of Chinese Academy of Science, Beijing, China
Correspondence: [*] Corresponding author. He Huang. E-mail: huangh@dsp.ac.cn..
Abstract: Deep learning methods have been widely used in today’s network security systems for their outperforming in detecting rates of the patterns of anomalous network actions. Particularly, in the field of malware traffic classification, time reduction for a detecting process is of great importance and can stop network damage at an early stage. To achieve a balance between the detection rate and time consumption, practical structures of relative systems are usually simple, complicating the application of appropriate accelerating methods. In this study, we propose a novel ant-colony -based clustering algorithm, which can efficiently select the most valuable data points for the next step of learning. In addition, to take advantage of the widely-used convolutional neural network architecture, we defined the mapping-image of each raw traffic data, and then transformed the intrusion detection problem into an image recognition problem. Before each training iteration, we applied the clustering algorithm to locate the most-featured part of each specific type of network traffic. Next, we utilized this featured part in the training, by considering its depth and shallow information, so that its precision and robustness can be improved. Preliminary experiments demonstrate that our method not only achieves high-detection-rate results but also manages to utilize much less processing time with proper parameter tuning of the neural networks.
Keywords: Deep learning, convolutional neural network, intrusion detection system, network anomaly detection, heuristic clustering
DOI: 10.3233/JIFS-179096
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 1, pp. 409-423, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl