Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering
Guest editors: David Pinto and Vivek Singh
Article type: Research Article
Authors: Pérez-Espinosa, Humbertoa; b; * | Torres-García, Alejandro Antonioc
Affiliations: [a] Mexican National Research Council (CONACyT), Mexico | [b] CICESE-UT 3, Andador 10 #109, Ciudad del Conocimiento, Tepic, Nayarit, México | [c] Computer Science Department. Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE). Puebla, México
Correspondence: [*] Corresponding author. Humberto Pérez-Espinosa. Tel.: +52 1 2221320589; Fax: +52 3111295930; E-mail: hperez@cicese.mx.
Abstract: The barking and other vocalizations of the domestic dog are an exciting source of information. Studies in the area of ethology have analyzed their function and the way humans and conspecifics perceive them. Without a doubt, better understanding the nature of barking can bring benefits both, to improve the welfare of dogs, and for humans who can build systems that take advantage of the information extracted from vocalizations for applications, such as, security, assistance, and entertainment. To develop automatic systems for the analysis of domestic dog vocalizations, we need to have acoustic characterization methods that allow capturing the most relevant properties of barking and thereby improving the performance of automatic classifiers. In this paper, a comparison between several acoustic characterization techniques is made to determine their relevance in the classification of two aspects of the barking, which are the context in which they were generated and the identity of the dog that emitted the bark. We classified the tested acoustic features as qualitative and quantitative. The quantitative are derived from the processing of low-level acoustic descriptors and have been used most widely in audio analysis. The qualitative ones are a type of acoustic that capture aspects related to the perception of the melody of the vocalizations and had not been previously tested in this field of application.
Keywords: Dog’s vocalizations, acoustic features, automatic audio classification
DOI: 10.3233/JIFS-179050
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 5051-5061, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl