Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent and Fuzzy Systems applied to Language & Knowledge Engineering
Guest editors: David Pinto and Vivek Singh
Article type: Research Article
Authors: Tiwari, Anoop Kumara | Shreevastava, Shivamb; * | Subbiah, Karthikeyana | Som, T.b
Affiliations: [a] Department of Computer Science, BHU, Varanasi, India | [b] Department of Mathematical Sciences, IIT (BHU), Varanasi, India
Correspondence: [*] Corresponding author. Shivam Shreevastava, Department of Mathematical Sciences, IIT (BHU), Varanasi, 221005, India. E-mail: shivam.rs.apm@itbhu.ac.in.
Abstract: Due to the development of modern internet-based technology, the electronically stored information is growing exponentially with time. It is highly challenging to select relevant and non-redundant features of the real-valued high dimensional datasets. Feature selection, a preprocessing technique, refers to the process of reducing the dimension of the input data in order to extract the most meaningful features for processing and analysis. One of the numerous useful applications of rough set theory is the attribute or feature selection, but it has certain limitations as it cannot be applied on real-valued data sets directly because rough set based feature selection can handle discrete data only. In order to deal with real-valued data sets, discretization method is applied to convert dataset from real-valued to discrete, which usually leads to information loss. Fuzzy rough set theory is profitably applied to address this problem and retain the semantics of real-valued datasets. However, intuitionistic fuzzy set can deal with uncertainty in a much better way when compared to fuzzy set theory as it considers membership, non-membership and hesitancy degree of an object simultaneously. In this paper, an intuitionistic fuzzy rough set model is established by combining intuitionistic fuzzy set and rough set. Furthermore, we propose a novel approach of feature selection derived from this model. Moreover, we develop an algorithm based on our proposed concept. Finally, our approach is applied to some benchmark data sets and compared with the existing fuzzy rough set based technique. The performed experiments show the superiority of our approach.
Keywords: Rough set, fuzzy set, intuitionistic fuzzy set, degree of dependency, feature selection
DOI: 10.3233/JIFS-179043
Journal: Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5, pp. 4969-4979, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl