Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Green and Human Information Technology
Guest editors: Seong Oun Hwang
Article type: Research Article
Affiliations: School of Game, Hongik University, 2639, Sejongro, Sejong, South Korea
Correspondence: [*] Corresponding author. Taeho Jo, School of Game, Hongik University, 2639, Sejongro Sejong, South Korea. E-mail: tjo018@hongik.ac.kr.
Abstract: This article proposes the modified KNN (K Nearest Neighbor) algorithm which receives a string vector as its input data and is applied to the text summarization. The results from applying the string vector based algorithms to the text categorizations were successful in previous works and the text summarization is able to be viewed into a binary classification where each paragraph is classified into summary or non-summary. In the proposed system, a text which is given as the input is partitioned into a list of paragraphs, each paragraph is classified by the proposed KNN version, and the paragraphs which are classified into summary are extracted ad the output. The proposed KNN version is empirically validated as the better approach in deciding whether each paragraph is essential or not in news articles and opinions. We need to define and characterize mathematically more operations on string vectors for modifying more advanced machine learning algorithms.
Keywords: String vector, semantic similarity, string vector based KNN, text summarization
DOI: 10.3233/JIFS-169841
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 6, pp. 6005-6016, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl