Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Green and Human Information Technology
Guest editors: Seong Oun Hwang
Article type: Research Article
Authors: Hai, Quan Trana | Hwang, Seong Ounb; *
Affiliations: [a] Department of Electronics and Computer Engineering, Hongik University, Sejong, Korea | [b] Department of Software and Communications Engineering, Hongik University, Sejong, Korea
Correspondence: [*] Corresponding author. Seong Oun Hwang Department of Software and Communications Engineering, Hongik University, Sejong, Korea. E-mail: sohwang@hongik.ac.kr.
Abstract: Most Intrusion Detection Systems (IDS) nowadays are signature-based. They are very useful and accurate for detecting known attacks. However, they are inefficient with unknown attacks. Moreover, most of cyber attacks start with malicious URLs. Attackers try to trick users into clicking on malicious URLs. This gives attackers an easy way to launch attacks. To defend against this, companies and organizations use IDS/IPS to detect malicous URLs using blacklist of URLs. This is very efficient with known malicious URLs, but useless with unknown malicious URLs. To overcome this problem, a number of malicious Web site detection systems have been proposed. One of the most promising methods is to apply machine learning detection techniques. In this paper, we present a new lexical approach to classify URLs by using machine learning techniques which patternize the URLs. Our approach is based on natural language processing features which use word vector representation and ngram models on the blacklist word as the main features. Using this technique can help classifier distinguish benign URLs from malicious ones. Our experimentation shows that our approach can achieve a high degree of accuracy at 97.1% in the case of SVM. Moreover, it can maintain a high level of robustness with 0.97 precision and 0.93 recall scores.
Keywords: Machine learning, cyber Security, URL classification, malicious URL
DOI: 10.3233/JIFS-169831
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 6, pp. 5889-5900, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl