Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Intelligent tools and techniques for signals, machines and automation
Guest editors: Smriti Srivastava, Hasmat Malik and Rajneesh Sharma
Article type: Research Article
Authors: Shahid, Abdullaa | Wahab, Mohda | Rafiuddin, Nidala; * | Saad Bin Arif, M.a | Malik, Hasmatb
Affiliations: [a] Department of Electrical Engineering, AMU, Aligarh, India | [b] Division of Instrumentation and Control Engineering, NSIT, Delhi
Correspondence: [*] Corresponding author. Nidal Rafiuddin, Department of Electrical Engineering, AMU, Aligarh, India. E-mail: nidal.rafi@gmail.com.
Abstract: Brain-computer interface may be delineated as the merger of machine and software through which brain activity is allowed to govern a peripheral device or computer. The major aim is to aid a critically paralyzed person to live a normal healthy life. This arrangement passes over numerous stages which include data acquisition, feature extraction, data classification and control. The present work emphasizes the use of selective wavelet based features and classifies them using an artificial intelligence based technique namely support vector machine for wrist movement in four different directions. The data base used is the data set-3 of Brain-computer interface competition-4, which pertains to MEG signals acquired from two healthy subjects performing wrist movement in four different directions. The signal was processed using both wavelet packet transform and discrete wavelet transform and thereafter statistical features were extracted. The best discriminating features were selected after ranking all the extracted features using Principle component analysis. These features were then fed to the support vector machine based classifier for classification. The accuracy achieved is better than most reported in theliterature.
Keywords: BCI, MEG, support vector machine, wavelet packet transform, discrete wavelet transform
DOI: 10.3233/JIFS-169796
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 5, pp. 5123-5130, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl