Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Iteration, Dynamics and Nonlinearity
Guest editors: Manuel Fernández-Martínez and Juan L.G. Guirao
Article type: Research Article
Affiliations: School of Mathematics and Information Engineering, Puyang Vocational and Technical College, Puyang, China
Correspondence: [*] Corresponding author. Yuan Sun, School of Mathematics and Information Engineering, Puyang Vocational and Technical College, Puyang, 457001, China. E-mail: sunyuan_y@sina.com.
Abstract: When using the current authentication code recognition system to identify the character authentication code, there are the problems of low integrity and low recognition accuracy. In this regard, a design method of artificial intelligence recognition system for cracking character type authentication code is proposed in this paper. The denoising algorithm based on the connected domain is used to remove the noise in the character type authentication code, and the character authentication code after the denoising is normalized. The feature extraction module is used to extract color moments, color correlation diagrams and LBP texture features of character authentication codes, and complete the feature extraction of character authentication codes. The similarity matching module is used to match the characters of the character authentication code. In the recognition module, the character authentication code is classified by the classification algorithm based on multi-feature SVM, and the recognition of the character authentication code is completed. The experimental results show that the proposed method has high information integrity and high recognition accuracy.
Keywords: Character authentication code, artificial intelligence, recognition system, feature extraction
DOI: 10.3233/JIFS-169760
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 4, pp. 4411-4420, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl