Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Iteration, Dynamics and Nonlinearity
Guest editors: Manuel Fernández-Martínez and Juan L.G. Guirao
Article type: Research Article
Authors: Wu, Gengruia; c; * | Bo, Niaob | Wu, Hushenga | Yang, Yongc | Hassan, Nasruddind; *
Affiliations: [a] Material Management and Support College, Armed Police Force Engineering University, Xi’an, China | [b] Basic Department, Police officer college of Armed Police Force, Chengdu, China | [c] Department of Information and Communication, Police officer college of Armed Police Force, Chengdu, China | [d] School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
Correspondence: [*] Corresponding author. Gengrui Wu. E-mail: wugr_wj@163.com and Nasruddin Hassan. E-mail: nas@ukm.edu.my.
Abstract: The key algorithm of the traditional system is aimed at the minimum of a certain factor, but does not consider the uncertain conditions and various modes of transportation, and the result of the scheduling is not excellent. To this end, a new fuzzy scheduling optimization system based on ant colony algorithm for multi-objective transportation path is designed. Based on the GPS module, a fuzzy scheduling optimization system based on ant colony algorithm for multi-objective transportation path is designed, and the overall structure of the system is given. The scheduling optimization problem of freight transport lines is described, and the volume of demand, the total volume of delivery and the remaining number of vehicles are made fuzzy processing. The goal is to minimize the total time of the advance or tardiness of the transportation and the total cost, so that the fuzzy scheduling model of transportation path is built. According to the principle of ant colony algorithm, the built multi-objective model will be transformed into a single objective model, and combined with the objective function, the index heuristic information and the performance of ant colony algorithm are set, and the optimal solution of that the deviation is minimum with the ideal solution is calculated by using ant colony algorithm, so as to achieve the multi-objective transportation path scheduling. The experimental results show that the total transportation distance of the designed system is short, the total cost is low, and the goods can be delivered in time.
Keywords: Ant colony algorithm, multi-objective, transportation path, fuzzy, scheduling
DOI: 10.3233/JIFS-169746
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 4, pp. 4257-4266, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl