Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Iteration, Dynamics and Nonlinearity
Guest editors: Manuel Fernández-Martínez and Juan L.G. Guirao
Article type: Research Article
Authors: Liu, Shuyinga; * | Zou, Yanfeia | Terasvirta, A.M.b
Affiliations: [a] School of Computer Science, Xianyang Normal University, Xianyang, China | [b] Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
Correspondence: [*] Corresponding author. Shuying Liu, School of Computer Science, Xianyang Normal University, Xianyang 712000, China. E-mail: lsynate@163.com.
Abstract: The traditional data query algorithm based on clustering strategy library ignores the association features of social network data, characteristic data acquisition exist a large number of redundant features and frequent relationship among features is low, resulting in the social network data query efficiency and the accuracy is poor, so a fast query algorithm for social network data based on fuzzy degree function based on association features is proposed, it is based on Apriori algorithm for data association feature mining of social network to obtain the maximum frequent association feature set; for association feature preprocessing, it reduce the maximum frequent association feature set by feature dimension reduction and de redundancy algorithm, to obtain better social network maximal frequent associated feature set; when using fuzzy function to query social network data quickly, it uses data of a single gene ambiguity function to build a fast data query diagram, input the best frequent feature set of social network, and output the query results of social network data with the highest priority. The experimental results show that the proposed algorithm has the advantages of high efficiency and high accuracy in social network data query.
Keywords: Association features, apriori algorithm, social network data, data set, maximum frequent association features, ambiguity function, query algorithm
DOI: 10.3233/JIFS-169736
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 4, pp. 4153-4162, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl