Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Ambient advancements in intelligent computational sciences
Guest editors: Shailesh Tiwari, Munesh Trivedi and Mohan L. Kohle
Article type: Research Article
Authors: Kumar, Ashisha; * | Bhatnagar, Roheeta | Srivastava, Sumitb
Affiliations: [a] Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur, India | [b] Department of Information Technology, Manipal University Jaipur, Jaipur, India
Correspondence: [*] Corresponding author. Ashish Kumar, Department of Computer Science and Engineering, Manipal University Jaipur, 303007 Jaipur, India. E-mail:kumar.ashish@jaipur.manipal.edu.
Abstract: Even though finding out distance is the central core of k-Nearest Neighbor classification techniques, similarity measures are often favored against distance in various realistic scenarios and situation. Most of the similarity measures, which are used to classify an instance, are based on geometric model. Their effectiveness decreases with the increases in the number of dimensions. This paper establishes an efficient technique called ARSkNN for finding out class of any given instance using a measure based on an unique similarity, that does no longer compute distance, for k-NN classification. Our empirical results show that ARSkNN classification technique is better than the previous established k-NN classifiers. The performance of algorithm was verified and validated on various datasets from different domains.
Keywords: Data mining, classification, nearest neighbor, similarity measure
DOI: 10.3233/JIFS-169701
Journal: Journal of Intelligent & Fuzzy Systems, vol. 35, no. 2, pp. 1633-1644, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl