Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Section: Advances in intelligent computing for diagnostics, prognostics, and system health management
Guest editors: Chuan Li and José Valente de Oliveira
Article type: Research Article
Authors: Li, Xiaochuana | Duan, Fangb | Bennett, Ianc | Mba, Davida; *
Affiliations: [a] Faculty of Technology, De Montfort University, Leicester, UK | [b] School of Engineering, London South Bank University, London, UK | [c] Department of Rotating Equipment, Royal Dutch Shell, Hague, AN, The Netherlands
Correspondence: [*] Corresponding author. David Mba, Faculty of Technology, De Montfort University, Leicester, LE1 9BH, UK. E-mail: david.mba@dmu.ac.uk.
Abstract: Reciprocating compressors are widely used in oil and gas industry for gas transport, lift and injection. Critical compressors that compress flammable gases and operate at high speeds are high priority equipment on maintenance improvement lists. Identifying the root causes of faults and estimating remaining usable time for reciprocating compressors could potentially reduce downtime and maintenance costs, and improve safety and availability. In this study, Canonical Variate Analysis (CVA), Cox Proportional Hazard (CPHM) and Support Vector Regression (SVR) models are employed to identify fault related variables and predict remaining usable time based on sensory data acquired from an operational industrial reciprocating compressor. 2-D contribution plots for CVA-based residual and state spaces were developed to identify variables that are closely related to compressor faults. Furthermore, a SVR model was used as a prognostic tool following training with failure rate vectors obtained from the CPHM and health indicators obtained from the CVA model. The trained SVR model was utilized to estimate the failure degradation rate and remaining useful life of the compressor. The results indicate that the proposed method can be effectively used in real industrial processes to perform fault diagnosis and prognosis.
Keywords: Condition monitoring, canonical variate analysis, cox proportional hazard model, support vector regression
DOI: 10.3233/JIFS-169550
Journal: Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3771-3783, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl